
Journal of Global Optimization13: 241–254, 1998.
© 1998Kluwer Academic Publishers. Printed in the Netherlands.

241

On Producing Multiple Solutions Using Repeated
Trials

FRANS M. COETZEE1 and VIRGINIA L. STONICK2

1Siemens Corporate Research, Princeton NJ 08540, USA;2ECE Department, Carnegie Mellon
University, Pittsburgh PA 15213, USA

(Received 2 April 1996; accepted 29 December 1997)

Abstract. The number of trials that is required by an algorithm to produce a given fraction of the
problem solutions with a specified level of confidence is analyzed. The analysis indicates that the
number of trials required to find a large fraction of the solutions rapidly decreases as the number of
solutions obtained on each trial by an algorithm increases. In applications where multiple solutions
are sought, this decrease in the number of trials could potentially offset the additional computational
cost of algorithms that produce multiple solutions on a single trial. The analysis framework presented
is used to compare the efficiency of a homotopy algorithm to that of a Newton method by measuring
both the number of trials and the number of calculations required to obtain a specified fraction of the
solutions.
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1. Introduction

Frequently a numerical solution procedure can be considered to be successful if it
is capable of finding most, if not all, of the solutions to a set of nonlinear equations.
A practical example is the solution of nonlinear circuit equations (Trajković et al.,
1993), where all network states have to be known for optimal design. However,
most standard techniques for solving systems of equations, such as Newton meth-
ods, produce a single solution from an initial point, and multiple trials are required
to produce multiple solutions. In contrast, methods such as homotopy and deflation
can produce multiple, and sometimes all, solutions from one initial point.

Numerical solution methods are usually compared on the basis of the compu-
tational cost of a single trial. Comparisons of algorithms based on this criterion
usually favor single-solution approaches, while methods such as homotopy are
frequently dismissed unless exhaustive properties can be guaranteed to offset their
computational cost. Unfortunately, guarantees of exhaustive behavior are known
only for some classes of functions (Drexler, 1978; Garcia and Zangwill, 1979; Mor-
gan and Sommese, 1987), are frequently not constructive (Alexander, 1978; Diener,
1987) or are intricate to implement (Diener and Schaback, 1990). However, this
paper illustrates that methods capable of producing multiple solutions on a single
trial, even when not exhaustive, can perform comparably to, or show potential
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computational advantages over traditional single-solution approaches, when used
to find multiple solutionsusing repeated trials.

We develop a model to compare the efficiency of different algorithms at pro-
ducing multiple solutions to a set of equations having a finite solution setQ =
{x1, x2, . . . , xN }. Specifically, we analyze the number of trials required to obtain
a fractionx of theN solutions with a given probability. Given such a model for
the number of trials required, and a reasonable estimate of the relative cost of each
trial for different algorithms, it is possible to choose between different algorithms.

Central to the analysis is the quantityP [X = k|N,L], which is the probability
that exactlyk different solutions out of theN possible solutions is obtained after
a sequence, defined to beL successive trials. Using this quantity, the associated
cumulative measure

P [X > k|N,L] = 1−
k−1∑
t=0

P [X = t|N,L], (1)

which is the probability thatat leastk different solutions of theN possible solu-
tions are represented in a given sequence, can be defined. The exact calculation
of these quantities depends heavily on the chosen algorithm, the problem being
solved, and how repeated trials are initialized. We consider the general case of de-
terministic algorithms. Deterministic algorithms always produce the same solution
for a given set of initial arguments to the algorithm; an example is the Newton
method. It is clear that for these methods, the probability structure underlying (1)
derives only from the sampling of the original argument space and the regions of
convergence. This characteristic provides a rich structure for statistical modeling.
Therefore, this paper focuses on describing the relationship between probabilities
and regions of convergence for deterministic methods.

The general framework for estimatingP [X = k|N,L] is formulated in Sec-
tion 2. The formulation shows that this quantity can be calculated by considering
equivalence classes of argument sets. However, in the general case, the combina-
torial nature of the resulting problem precludes brute-force numerical calculation
of the required probabilities even for small problems. Therefore, approximate the-
oretical bounds for some special cases, which can be applied to provide general
guidelines for algorithm selection, are described in Section 2.1. The use of the
derived procedures for numerical estimation ofP [X = k|N,L] is illustrated on
the six-hump camelback problem (Dixon and Szegö, 1978) in Section 3.

2. Problem formulation

A deterministic algorithm is denoted by(ψ,A,Q) whereA is a set from which
the starting arguments (such as the initial starting point) are chosen,Q is the set
of solutions, and the solution procedure is the mappingψ : A → 2Q, where 2Q

is the power set ofQ. Denoting the cardinality of a setU by |U | , it follows that
|ψ(a0)| 6 1 for all a0 ∈ A if the algorithm produces at most one solution for a
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given initial argument, while if |ψ(a0)| > 1 multiple solutions are produced on
a single trial. An algorithm is globally convergent ifψ(a0) 6= φ for all a0 ∈ A,
whereφ denotes the empty set. For each solutionxi ∈ Q, the algorithmψ results
in an associatedbasin of attractionor convergence region, defined as9(xi) = {a ∈
A | xi ∈ ψ(a)}. In the general case, the convergence regions of different solutions
can overlap. Running the algorithm to completion once with a givena ∈ A is
called atrial . A sequenceof trials results from running the algorithmL times, and
is denoted by an ordered set of initial argumentsa = (a1, a2, . . . , aL). Running
the algorithm on a sequence implies an associated mapψL : AL → 2Q defined
by ψL(a) = ∪Li=1ψ(ai). In the rest of the paper we assumeN is fixed and for
notational simplicity explicit dependencies on this quantity are omitted.

In general we are unconcerned with the exact choice of arguments and only
interested in the solutions that are produced. It is then convenient to group the initial
arguments into equivalence classes. SinceN is finite, we can number the elements
of 2Q and write 2Q = { Ui | i = 1,2, . . . ,2N }. Settingχi,L = (ψL)−1(Ui), i =
1,2, . . . ,2N it follows thatχ(L) = {χi,L}2Ni=1 is a partition ofAL with |χ(L)| 6
2N . This partition, as illustrated graphically forχ(1) in Figure 1, groups elements
of AL based on the sets of solutions which are obtained using these elements
as initial arguments. We note that sinceQ is finite, each partitionχ(L) is finite
and therefore the above formulation does not require thatA be either discrete or
continuous.

It is clear that the partitionsχ(L) for all L > 1 can be fully described using
only knowledge of the partitionχ(1). This characterization can be performed as
follows: let Z(L) = {(i1, i2, . . . , iL) | ij ∈ {1,2, . . . ,2N }, j = 1,2, . . . , L}
and setV (L) = {∏L

i=1 χq(i);1 ⊆ AL | q ∈ Z(L)}. Then each of the elements
Vj ∈ V (L) (note |V (L)| 6 2NL) collects all sequences that pick arguments
from the regionsχi;1 in the same order. The elements (sets) ofV (L) can then
be grouped intoN classes, based on the number of solutions produced by each
sequence from the element (set)Vj . Unfortunately, finding closed form expressions
for this combinatorial construction appears to be an unsolved problem.

As yet no probability structure has been defined to allow for the evaluation of
(1). Since the algorithm is deterministic the probability structure derives from the
way in which the initial arguments ina are chosen. In the absence of any infor-
mation about the shape and location of the convergence regions, it is reasonable
to assume that arguments for different trials are chosenindependentlyaccording to
thesamedistribution. We therefore assume the existence of a probability measure
P that specifies the probability of using the initial arguments in a subsetA′ ⊆ A
for a trial. This probability measure ensures that the probability of choosing an
argument on a given trial in each of 2N equivalence classes inχ(1) is specified.
Then, given the independence assumption,P is sufficient to calculate the induced
probability measure associated with the spaceAL of sequences of lengthL, as
well as induced probability measures on the equivalence classesχ(L). Given that
P induces all other relevant probability measures, we use the symbolP to denote
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x1 x2 x3 Q

ψ−1({x1,x2})
ψ−1({x1})

Ψ(x1)

A

Figure 1. Problem formulation graphically illustrated for the case where there are three so-
lutions. The circular regions ofA each correspond to a convergence region for one of the
solutionsxi , i = 1, 2,3. The convergence regions overlap. However, a partition is defined by
the setsχ(1) = {ψ−1(U) | U ∈ 2Q}.

all probability measures throughout; in context it should be clear which measure
is applicable. The probability of finding a given solutionxi on any given trial is
denoted bypi.

To calculateP [X = k|N,L] the sets

F(k;N,L) =
{
a = (a1, a2, . . . , aL) ∈ AL | | ∪Li=1 ψ(ai)| = k

}
,

k = 0,1,2, . . . , N (2)

corresponding to initial points yielding exactlyk solutions inL trials have to be
measured. Then

P [X = k|N,L] = P (F(k;N,L)) (3)

Equivalently, and simpler, is to calculate the probability of choosing a sequence
in each of the setsVj ∈ V (L), and adding the probabilities of all the setsVj ∈
V (L) whose sequences yield exactlyk solutions. Numerically the problem rapidly
becomes unmanageable even for small values ofN andL (N = 5, L = 10 implies
up to 1.12 1015 sets inV (10)). A significant reduction in complexity results from
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further grouping setsVj ∈ V (L) that contain sequences that are permutations of
each other. Specifically, a setVl containing a sequencea in of which ni elements
are inχi;1, for i = 1,2, . . . , N0 can be grouped with

L!
n1!n2! . . . nN0!

(4)

other sets inV (L). The latter approach allows for small problems to be analyzed
numerically, as is done in Section 3. However, even accounting for these permuta-
tion equivalences, the computations are numerically unmanageable if the number
of regionsχi;1 is large (above 15), and whenL increases much beyond 5. It is
therefore imperative that specific, simple bounds be derived for generating insight
into how the efficiency of an algorithm is impacted by overlap of convergence
regions. Such bounds are discussed in the next section.

2.1. ESTIMATES FOR DETERMINISTIC ALGORITHMS

To provide estimates of the probabilities of finding different numbers of solutions
we consider three cases. In the first caseψ produces at most one solution for a
given initial set of arguments. In the second case, the general problem where the
basins of attraction overlap partially is discussed. Finally, we consider the case
whereψ will always produce the solutionxi whenxj is produced, andvice versa.

When each initial point produces exactly one solution, the basins of attraction
are disjoint and form a partition of the set∪Ni=19(xi). If it is assumed that all basins
of attraction have roughly the same measurem and the argument space is sampled
uniformly, the probabilitiespi can be assumed to be equal. Equivalently, it can
be assumed that the basins of attraction differ in measure, but are sampled such
that the probabilitiespi are equal, i.e. the small basins of attraction are sampled
more heavily. If the algorithm is globally convergent the basins of attraction cover
A and hence the assumptions above lead topi = 1/N (if the algorithm fails to
produce a solution forA′ ⊂ A, whereP (A′) = α, the probabilities are decreased
to pi = (1− α)/N).

In the second case, the basins of attraction of the solutions overlap, but are not
the same, i.e.9(xi) ∩ 9(xj) 6= φ,9(xi) 6= 9(xj). To illustrate the effect of this
partial overlap, consider a system with two solutionsQ = {x1, x2}, and where the
regions of attraction partially overlap. The problem is symmetric inx1 andx2. For
two trials (L = 2) the following set of events is possible:

({x1}, {x1}) ({x1}, {x2}) ({x1}, {x1, x2})
({x2}, {x1}) ({x2}, {x2}) ({x2}, {x1, x2})
({x1, x2}, {x1}) ({x1, x2}, {x2}) ({x1, x2}, {x1, x2})

(5)

Note that the probability of findingx1 on a single trial is now given byp1 =
P ({x1}) + P ({x1, x2}) > P ({x1}). Applying symmetry arguments and assuming
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thatP ({x1, x2}) = λp1, it is straightforward to show that the probability of finding
both solutions in two trials is given by

1− 2

(
1− λ
2− λ

)2

(6)

Hereλ is a real factor proportional to the overlap of the regions of convergence
and measures the probability of obtaining one solution given that the other solution
has been found. Whenλ = 1, the regions overlap fully; whenλ = 0, the regions
are disjoint. Therefore, asλ is varied, various problems are generated intermediate
to the case considered above, and the case where all solutions have the same con-
vergence region. Based on Expression (6), it is clear that the effect of increasing
overlap is to increase the probability of finding more solutions in a given period of
time. This increase results since the overlap increases the probabilitypi associated
with a given solution, since it is no longer required that

∑
i pi = 1.

As N increases, a full accounting of joint probabilities of all combinations of
solutions defies analysis. Not only does the number of probabilities that has to
be specified increase (even assuming symmetry analogous to the above example a
total ofN probabilities have to be specified), but at issue is exactly how the conver-
gence regions overlap. For example, for the symmetric case as regions increasingly
overlap (λ = 1 in the problem above), a single convergence region exists and the
method is exhaustive. A more reasonable occurrence is to consider problems where
groups of solutions have significant overlap.

This leads us to the final case, where an algorithmψ always produces the so-
lution xi whenxj is produced, and vice versa. For this case it is possible to define
equivalence classes of solutions,

[xi] = {xj ∈ Q | 9(xi) = 9(xj )}. (7)

Each equivalence class has an associated probabilityP ([xi]) = pi and a basin
of attraction9([xi]) = 9(xi). Since equivalence classes are by definition disjoint,
this case corresponds to solving a problem whereQ consists of equivalence classes,
and has fewer solutions than the original problem. For example, assume that the
original setQ can be partitioned into a set of equivalence classes, such that each of
the equivalence classes contains exactlyr of the originalN solutions. If the basins
of attraction of the solutions are assumed equal thenP ([xi]) ' r/N = 1/(N/r).
The problem then corresponds to the first special case described above but having
onlyN/r solutions inQ.

Based on the three cases discussed above, it is reasonable to view the general
case where convergence regions overlap as a problem that is intermediate to two
cases. At one extreme the algorithm produces one solution on each trial and the
problem hasN non-overlapping convergence regions. At the other extreme the al-
gorithm produces groups of solutions at a time, which can be considered as solving
a problem with fewer solutions with non-overlapping convergence regions. In the
next section we provide a common statistical model for these two cases.
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2.2. NON-OVERLAPPING EQUAL-PROBABILITY CONVERGENCE REGIONS

Consider an algorithm where each trial produces one solutionxi , and for which
only one representative in each convergence region is kept. A sequence can then be
represented by the solutions(xi1, xi2, . . . , xiL) which result. Each of these samples
has an associated probability depending on the size of the convergence region of
the solutions present in the combination. Only the equal probability case is readily
analyzable, in which case the probabilityP [X = k|N,L] is given by the fraction
of sequences satisfying the constraint which defines the corresponding event.

Consider the set of strings(xi1, xi2, . . . , xiL) wherexij ∈ Q. The number of
strings satisfying the constraint that there are exactlyk different elements present
from an alphabet ofN solutions in the string of lengthL is denoted byη(k;N,L).
GivenN elements in the alphabet, there areNCk possible subsets ofk different
elements. Using anyk such elements as a new alphabet, there are a total ofkL

strings which can be constructed. From the definition ofη(k;N,L), it follows
that of thesekL strings in the new alphabet,η(j ; k,L) have exactlyj elements
present wherej ∈ {1,2, . . . , k}. Hence, there arekL −∑k−1

i=1 η(i; k,L) strings
that are constructed with the new alphabet that have exactlyk different elements
represented. Therefore, the total number of strings that can be constructed withk

different solutions of lengthL, is given by

η(k;N,L) = NCk

[
kL −

k−1∑
i=1

η(i; k,L)
]

(8)

Using the fact thatη(1;N,L) = N , the above equation specifies an iterative pro-
cedure for calculatingη(k;N,L). Since there is a total ofNL possible samples, it
follows that

P [X = k|N,L] = η(k;N,L)
NL

(9)

and it is possible to write the following difference equation for the probabilities:

P [X = k|N,L] = NCk

(
k

N

)L [
1−

k−1∑
i=1

P [X = i|k,L]
]

(10)

To bound this expression, consider the specific case of calculatingP [X = N |N,N],
i.e. the probability of finding allN solutions in the minimum number of successive
trials. Since the order in which the solutions are produced is irrelevant it follows
that all permutationsσ ∈ SN , the set of permutations ofN elements, should be
considered:

P [X = N |N,N] =
∑
σ∈SN

P (xσ(1), xσ(2), . . . , xσ(N))

=
(

N∏
i=1

p(xσ(i))

)∑
σ∈SN

1

 = N ! N∏
i=1

pi (11)
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This expression can be bounded above and below:

N !
(

min
i
{pi}

)N
6 P [X = N |N,N] 6 N !

(
1

N

)N
(12)

Using Stirling’s approximation to the factorial, the upper bound can be written as

N !
(

1

N

)N
'
(
N

e

)N ( 1

N

)N
=
(

1

e

)N
. (13)

2.3. DISCUSSION

Using the above derived bounds, it is now possible to make some general state-
ments about the desirability of algorithms that produce multiple solutions on a
trial. Consider first the case where the solutions can be grouped into equivalence
classes each containing approximatelyr solutions and with equal probability. The
probability of producing allN solutions in the minimum number of trials is given
by P [X = N/r|N/r,N/r]. A graph of the upper bound (12) of this quantityver-
susN is shown in Figure 2. On this graph the curve forr = 1 corresponds to a
method producing only one solution on each trial. As expected, the probability of
finding all solutions in the minimum number of trials becomes vanishingly small
as the number of solutions to a problem increases. Expression (13) describes the
asymptote of the curve. It is clear that any method capable of producing on aver-
age two solutions on the same trial will perform dramatically better at producing
solutions using the minimum number of trials than a method producing only one
solution on a trial. The exponential bound in (13) shows that even for relatively
smallN a substantial computational cost increase of a multiple solution procedure
over a single solution procedure could be offset by the smaller number of trials
required by the former to find a large subset of the solutions.

The second quantity of interest is the quantityP [X > N |N,L], which is the
probability that all possible solutions will be obtained inL trials. This quantity is
shown in Figure 3 for differentN . Figure 4 shows how many trials are needed to
ensure that with probability 0.95 a specified fractionx of N solutions have been
found; it showsL such thatP [X > xN |N,L] > 0.95. From both figures the value
of producing multiple solutions is clear from the sharp decrease in the number
of trials that results to reach a given fraction of the solutions with a specified
confidence level. Furthermore, as the probability threshold is raised this decrease
becomes increasingly pronounced.

Based on these results it is clear that significantly fewer trials are generally
required for a given level of performance, if multiple solutions are obtained on a
trial. This decrease in the number of trials can potentially compensate for a higher
computational cost per trial.
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Figure 2. Upper bound on the probabilityP of finding allN solutions using onlyN/r trials,
where on averager solutions are produced on a trial.
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Figure 3. ProbabilityP of finding allN solutions inL trials as a function ofL, for different
values ofr, the number of solutions found on average on a single trial.
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Figure 4. Minimum number of trialsL needed to obtain a fractionx of N solutions with
probability 0.95.

3. Example test problem

The six-hump camelback problem (Dixon and Szegö, 1978) was used as a test
problem. The objective is to find the fifteen critical points of the equation

f (x) = x6
1/3− 2.1x4

1 + 4x2
1 + x1x2 − 4x2

2 + 4x4
2 (14)

in the region[−2.0,2.0]2. Three algorithms were compared for solving this prob-
lem. The first algorithm is a damped Newton method, where a new estimatex+ of
the solution is generated by

x+ = x− − 1

4
[D2

xf (x
−)]−1Dxf (x

−) (15)

from the current solution estimatex−. Damping was introduced to ensure reason-
able convergence regions for all solutions from the initial points that were consid-
ered. In addition, the problem was solved using a recently introduced and generally
applicable two-stage sequential homotopy algorithm (Coetzee, 1995; Coetzee and
Stonick, 1995). The two-stage homotopy significantly increases the number of so-
lutions a given homotopy can obtain from a single initial point, but in general is
not exhaustive. These two algorithms are compared to the ideal globally convergent
single-solution algorithm, with each solution appearing with equal probability. For
this case, the theoretical results obtained in Section 2.1 hold.
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Figure 5. ProbabilityP of finding all fifteen solutions to the camelback problem as a function
of the number of trialsL. The reference algorithm is an algorithm which produces one solution
on a trial, where all convergence regions have equal probability.

For the first two algorithms repeated trials were performed on a grid of 324
initial points. On all of the trials a list was created containing each initial point and
the solutions that resulted from the trial. Using these results, a program was written
to numerically calculate the estimates ofP [X = k|N,L] andP [X > k|N,L] as
described in Section 2.1. These calculations are numerically feasible due to the fact
that both algorithms have only a few regions represented inχ(1), and each solution
has a high probability of occurrence. For the homotopy algorithm, this property
results from the fact that convergence regions overlap significantly (on average 11
solutions were found on a trial) while for the Newton method this property results
since exactly one solution can be obtained on a trial.

The numerical calculations yield the relationships shown in Figure 5 and Fig-
ure 6. Figure 5 shows the probability of finding all solutions as the number of
trials L increases. As expected, the probability of finding all solutions in a few
trials is much greater using the homotopy approach, with a given confidence level
being reached typically in an order of magnitude fewer trials. The damped Newton
method typically finds more solutions than the idealized algorithm for small values
of L due to the slightly larger convergence regions of some solutions. However,
as the fraction of solutions required approaches one, the difficulty in finding the
solutions with the smaller convergence regions results in more trials than for the
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Figure 6. Minimum number of trialsL needed for 0.95 probability thatk of the fifteen
solutions to the camelback function are obtained.
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Figure 7. NumberM of equivalent Newton steps required to obtaink of the solutions. Each
Newton step requires solving a linear system of equations.
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idealized test case. Figure 6 shows the minimum number of trials required to obtain
k of the solutions with 0.95 probability. It is clear that the large number of solutions
on a given homotopy path radically reduces the number of trials required to find
any fraction of the solutions with reasonable confidence.

To illustrate the impact of the fewer number of trials on the total computational
cost, the computational expenditure of the homotopy algorithm is compared to that
of the Newton algorithm. At each step along the continuation path, the homotopy
algorithm iterates using Newton’s algorithm, which involves solving a system of
two linear equations. Figure 7 shows the average number of Newton iterationsM

required by each method to findk of the solutions. It was found that the damped
Newton method required on average 55 iterations to converge to the required ac-
curacy. The homotopy algorithm averaged 2650 Newton iterations on each trial,
which is approximately 53 times as many iterations per trial as that of the Newton
method. However, the average cost to find all solutions are 4870 Newton iterations
for the homotopy method, and 3050 for the damped Newton method, which implies
a much smaller overall relative computational complexity of 1.60.

4. Conclusions

Using an algorithm that produces multiple solutions on a single trial, rather than a
method that yields only one solution on a trial, results in a sharp decrease in the
number of trials to find a specified fraction of the solutions. When large numbers
of solutions are required, this decrease in the number of trials could compensate
for the additional computational cost of producing multiple solutions on a single
trial. A guaranteed exhaustive method clearly represents one extreme since almost
any reasonable amount of computation will result in the superiority of such an
algorithm over other approaches. However, in the absence of such a method, it is
valuable to consider extending existing algorithms to obtain more solutions on a
single trial, if the computational cost is reasonable. Incorporating deflation tech-
niques, where solutions are removed from the solution set as they are found, seems
especially useful. Sequential homotopy methods are especially amenable to the
latter approach.
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